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Lucky Tea House Floors
Tatami mats
Traditional Japanese floor mats made of soft woven
straw. They are either square or have a 1× 2 aspect
ratio.

Certain floors, like tea houses, required that no four
mats touch at any point.



Monomer-dimer tiling:
Tile a subset of the
integer lattice with
monomers ( ), and

dimers ( and ).
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Monomer-dimer tiling:
Tile a subset of the
integer lattice with
monomers ( ), and

dimers ( and ).

Tatami restriction: No
tilings allowed with four
tiles meeting at a point.

Graph theory interpretation: In a grid graph G , a
matching M such that G −M contains no 4-cycles.



The trivial tilings

Horizontal “running bond” Vertical “running bond”



Small tilings

All 44 tatami tilings of the 3× 4 grid.



Happy New Year message, 2010



From Knuth volume 4A, Fascicle 1

First printing, March 2009, Exercise 7.1.4 #215.

Solution



Previous work on tatami tilings:
◮ Kotani, 2002: Tatami Tilings, in A Puzzler’s Tribute: A Feast for

the Mind.

◮ Hickerson, 2002: OEIS a068920 (and other OEIS entries)
http://www.research.att.com/~njas/sequences/.

◮ Knuth, 2009: The Art of Computer Programming, volume 4,
fascicle 1B.

◮ R. and Woodcock, 2009: Counting Fixed-Height Tatami Tilings,
Electronic J. of Combinatorics, Paper R126 (2009) 20 pages.

◮ Alhazov, Morita, and Iwamoto, 2010: A note on tatami tilings,
Mathematical Foundation of Algorithms and Computer Science,
RIMS Kôkyûroku series, No. 1691, Research Institute for
Mathematical Sciences, Kyoto, Japan, (2010), 1–7.

◮ Erickson, R., Schurch, and Woodcock, 2010: Auspicious
Tatami Mat Arrangements, 16th COCOON Conference, LNCS
6196, pp. 288–297. Updated version to appear in the Electronic
Journal of Combinatorics.

http://www.research.att.com/~njas/sequences/


Larger tilings suggest structure



What are the consequences of this arrangement?



This placement is forced.



And this placement is also forced.



As is this.



And this.



Ditto.



Etc.



Until we reach the perimeter.



This a ray. They can go NE, NW, SE, SW.



?

How do rays start? (The question mark.) Not a
vertical dimer.



Could be a monomer.



A monomer gives a vortex.



A vortex generates four rays.



Could be a horizontal dimer.



Again the placement of many tiles is forced.



A bidimer also generates four rays.



The “beginning” of a ray:
◮ Not the beginning .



The “beginning” of a ray:
◮ Not the beginning .

◮ Case 1, bidimer, two dimers share a long edge:
. Occurs anywhere.

loner

vortex

bidimer

vee



The “beginning” of a ray:
◮ Not the beginning .

◮ Case 1, bidimer, two dimers share a long edge:
. Occurs anywhere.

◮ Case 2: monomer at beginning .

◮ Case 2(a), vortex: . Not on boundary.
◮ Case 2(b), loner: . Only on boundary.
◮ Case 2(c), vee: . Only on boundary.

loner

vortex

bidimer

vee



A bigger example

The border determines the diagram.



A bigger example

T-diagram

The border determines the diagram.
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◮ Let r be the number of rows and c the number
of columns in an r × c rectangle.
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Tilings with no monomers.

◮ Let r be the number of rows and c the number
of columns in an r × c rectangle.

◮ How many tilings, if any, are there with no
monomers? Denote the number T (r , c , 0).

◮ There are no vortices (obviously).

◮ The bidimers need to be carefully placed, close
to the center.

◮ If there is one bidimer only, then the dimensions
must have the form n × n, or n × (n + 1), or
n × (n + 2), subject to parity constraints.



Possible tilings with one bidimer:

Odd height:

Even height:

or



Tatami tilings and compositions
(Hickerson)

Odd: Composition of c into parts of sizes r + 1 or r − 1. (Multiply by 2
to get tatami count.)
Example with r = 7:

42 = 6 + 6 + 6 + 8 + 8 + 8

Even: Compositions of c into parts of sizes (r − 2 or r) alternating with
parts of size 1.
Example with r = 8:

32 = 1 + 6 + 1 + 6 + 1 + 8 + 1 + 8 + 1 + 8 + 1



Encoding of odd height tilings



All height r tilings (for odd r ≥ 3)

A = |+ + + + + + + · · ·

B = |+ + + + + + + · · ·
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All height r tilings (for odd r ≥ 3)

A = |+ + + + + + + · · ·

B = |+ + + + + + + · · ·

A = |+
(

+
)

B and B = |+
(

+
)

A

A =
(

| −
(

+
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+
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|+
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+
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)(
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))−1 (

|+
(

+
))

Tr = A+ B − |

=
(
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+
))−1 (

|+ +
)
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All height r tilings (odd)
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(
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+
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+
))−1 (
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Substitute:

◮ 1 for |,
◮ z r−1 for and , and

◮ z r+1 for and

Tr (z) =
(

1+z r−1 + z r+1
) (

1−(z r−1+z r+1)2
)−1 (

1 + z r−1+z r+1
)



All height r tilings (odd)

Tr =
(

|+ +
)(

| −
(

+
)(

+
))−1 (

|+ +
)

Substitute:

◮ 1 for |,
◮ z r−1 for and , and

◮ z r+1 for and

Tr (z) =
(

1+z r−1 + z r+1
) (

1−(z r−1+z r+1)2
)−1 (

1 + z r−1+z r+1
)

=
(1 + z r−1 + z r+1)2

1− (z r−1 + z r+1)2



All height r tilings (odd)

Tr =
(

|+ +
)(

| −
(

+
)(

+
))−1 (

|+ +
)

Substitute:

◮ 1 for |,
◮ z r−1 for and , and

◮ z r+1 for and

Tr (z) =
(

1+z r−1 + z r+1
) (

1−(z r−1+z r+1)2
)−1 (

1 + z r−1+z r+1
)

=
(1 + z r−1 + z r+1)2

1− (z r−1 + z r+1)2

=
1 + z r−1 + z r+1

1− z r−1 − z r+1



Counts by type of dimer (r odd)
With ℓ = (r + 1)/2, the coefficient of xhy v is the
number of tilings with h horizontal dimers and v

vertical dimers in Tr (x , y) below.

Tr(x , y) =
1 + y ℓ(ℓ−1)x (ℓ−1)2(1 + x2ℓ−1)

1− y ℓ(ℓ−1)x (ℓ−1)2(1 + x2ℓ−1)

Theorem
For r odd, the number of tatami tilings with

k(ℓ2 − ℓ) = k(r 2 − 1)/4 vertical and

k(ℓ− 1)2 + j(2ℓ− 1) = k(r − 1)2/4 + jr horizontal

tiles is

2

(

k

j

)

.



Summary: generating functions for tatami
tilings of height r

Tr (z) =































































1 if r = 0
1

1− z2
if r = 1

1 + z2

1− z − z3
if r = 2

1 + z r−1 + z r+1

1− z r−1 − z r+1
if r odd, 3 ≤ r ≤ c

(1+z)
1+z r−2+z r

1−z r−1−z r+1
if r even, 4 ≤ r ≤ c



Consequences (errata and check)



Changing gears!

We were looking at tatami tilings where m = 0 (no
monomers).

Now we look at tatami tilings where m is
maximized.



What is the maximum number of
monomers?

Assuming r ≤ c ,

max =

{

c + 1 if r even , c odd

c otherwise.



Some 7× 7 tilings with 7 monomers



Maximizing monomers in a square
Theorem: There are n2n−1 tatami tilings of an
n × n square that use the maximum number of
monomers.
Proof: First, structural preliminaries.

◮ An n × n tatami tiling has n monomers ( ) if

and only if it has no vortices ( ) or bidimers
( ).

◮ An n × n tatami tiling can not have more than
n monomers.

◮ The trivial tiling has n monomers.
◮ Every other tiling with n monomers can be
obtained from the trivial tiling by diagonal flips.

◮ Every tiling with n monomers has monomers in
two adjacent corners.



Counting part of proof (n even)

Upper corners
fixed,
a diagonal flip,
3 diagonal flips. ew e

w

ew



Counting part of proof (n even)

Upper corners
fixed,
a diagonal flip,
3 diagonal flips. ew e

w

ew

◮ Classification: w, e flip up or not?

◮ If yes, then all flips have the same orientation.

◮ n − 3 other flips possible.

◮ Contribution to the count 2 · 2n−3.



Counting part of proof (n even)

If no, then reduce:
ew

⇒

Non-trivial example:
ew

w, e can flip down:

Recurrence relation: s(n) = 2 · 2n−3 + 4 · s(n − 2).



The happy new year message again

Dear Friends,
... If you are bored, perhaps you will have fun
proving that the number of tilings of an n× n square
that maximize the number of monomers is n2n−1.
Cheers, Frank



Don Knuth e-mail

Dear Frank,
I resisted the challenge in your New Year’s card (about 2n−1n) for more
than four weeks, but finally realized that I couldn’t live any longer
without trying to find out what was going on with those tatami tilings.
I budgeted half a day to explore the problem; and finally figured out
enough of the structure to declare victory after two days; but my
derivation is not at all simple. Certainly I have no way to group the
solutions into, say, n classes of size 2n−1 (although I do have lots of
classes of solutions of size 2n−2).
....
All lots of fun, but I do have to get back to TAOCP!
Cordially, Don

Previously open problem: Give a direct bijective proof that has “n

classes of size 2n−1” (or vice-versa). Solved by Mark Schurch.



Extension to rectangles (r ≤ c)

Theorem
T (r , c ,max) is equal to



































































2r−4(r + 4)(r + 2) if r even , c even , c > 2r + 1

2r−4(r + 3)2 if r odd , c > 2r + 1

2r−6(r + 2)2 if r even , c odd , c > 2r + 1

2r−4 (3r−c+4) (c−r+2) if r ≡ c mod 2 and r + 1 ≤ c ≤ 2r + 1

2r−4 (3r−c+4) (c−r+2)− 2r−4 if r odd , c even , r + 2 ≤ c ≤ 2r

2r−6 (29r+17) if r odd , c even , c = r + 1

2r−6 (3r−c+4) (c−r+2)

+(2c−2r+3)2r−6 if r even c odd, r+1 ≤ c ≤ 2r+1

r2r−1 if r = c



Monomers arbitrary, but r fixed

For height r = 3
Let A(c) be the number of 3×c

tilings which start with the blue
tile shown on the right. Recurrences for A(c)

A(c − 3) A(c − 4) B(c − 2)A(c − 1) A(c − 2)

Similarly for B(c) and
C (c) B(c − 1) A(c − 2) A(c − 2)

Recurrences for B(c)

A(c − 3) A(c − 3)B(c − 1)

Recurrences for C (c)



Monomers arbitrary, but r fixed

For height r = 3
Let A(c) be the number of 3×c

tilings which start with the blue
tile shown on the right. Recurrences for A(c)

A(c − 3) A(c − 4) B(c − 2)A(c − 1) A(c − 2)

Similarly for B(c) and
C (c) B(c − 1) A(c − 2) A(c − 2)

Recurrences for B(c)

A(c − 3) A(c − 3)B(c − 1)

Recurrences for C (c)

A(c) = A(c − 1) + A(c − 2) + A(c − 3) + A(c − 4) + B(c − 2),

B(c) = B(c − 2) + 2A(c − 2),

C (c) = B(c − 1) + 2A(c − 3).



This is a linear recurrence relation in A,B ,C so we have
rational generating functions.
The number of tilings with r rows and c columns is the
coefficient of zc in the generating function Tr(z).



This is a linear recurrence relation in A,B ,C so we have
rational generating functions.
The number of tilings with r rows and c columns is the
coefficient of zc in the generating function Tr(z).

Theorem
For height r = 1, 2, 3 the generating functions Tr(z) are

T1(z) =
1

1− z − z2
, T2(z) =

1 + 2z2 − z3

1− 2z − 2z3 + z4
, and

T3(z) =
1 + 2z + 8z2 + 3z3 − 6z4 − 3z5 − 4z6 + 2z7 + z8

1− z − 2z2 − 2z4 + z5 + z6
.



This is a linear recurrence relation in A,B ,C so we have
rational generating functions.
The number of tilings with r rows and c columns is the
coefficient of zc in the generating function Tr(z).

Theorem
For height r = 1, 2, 3 the generating functions Tr(z) are

T1(z) =
1

1− z − z2
, T2(z) =

1 + 2z2 − z3

1− 2z − 2z3 + z4
, and

T3(z) =
1 + 2z + 8z2 + 3z3 − 6z4 − 3z5 − 4z6 + 2z7 + z8

1− z − 2z2 − 2z4 + z5 + z6
.

Note that the denominators are (almost)
self-reciprocal. Open: Why is this true?



The g.f. for n = 10, from Maple

T10(z) = (224z65 +

280z64−54z63−768z62− · · · (terms omitted) · · ·−3270z10 +

1239z9−3570z8 + 1814z7−2824z6 + 815z5−4676z4−678z3 +

4240z2 + 88z + 1) / (z56−z55−z54 + z53−z52 + z51−z50 +

z49−z48−4z47 + 4z46−16z45 + 15z44 + z43−z42 +

17z41−17z40 + 33z39−23z38 + 41z37 + 7z36−2z35 +

66z34−66z33 + 18z32−18z31−78z30 + 68z29−120z28 +

68z27−78z26−18z25 + 18z24−66z23 + 66z22−2z21 + 7z20 +

41z19−23z18 + 33z17−17z16 + 17z15−z14 + z13 +

15z12−16z11+4z10−4z9−z8+z7−z6+z5−z4+z3−z2−z+1)



A table of the numbers

◮ Note that the numbers are non-monotone.

◮ How fast are they growing?



Asymptotics
The roots of the denominator of T2(z) are

1

2

(

1−
√
3±

√

−2
√
3

)

and
1

2

(

1 +
√
3±

√

+2
√
3

)

.

The one with the smallest modulus is
1

β
=

1

2

(

1 +
√
3−

√

2
√
3

)

≈ 0.435420544682339 . . .

Asymptotically,

T (2, n) ∼ −βP(1/β)

Q ′(1/β)
βn = 1.0607 . . . (2.2966 . . .)n

The corresponding value of 1/β for T3(z) is
2.0953 · · · .



r
pr qr Coefficients of the Denominator

Num. Den. (ascending degree)
1 1 2 1,−1, 1
2 3 4 1,−2, 0,−2, 1
3 8 6 1,−1,−2, 0,−2, 1, 1
4 14 11 −1, 1, 1, 1,−1, 7,-7, 1,−1,−1,−1, 1
5 18 14 −1, 1, 1,−1, 3,−1, 5, -2,−5,−1,−3,−1,−1, 1, 1

6 27 22
1,−1,−1, 1,−1,−2, 2,−10, 9,−1, 4, 6,
4,−1, 9,−10, 2,−2,−1, 1,−1,−1, 1

7 28 22
1,−1,−3, 3, 4,−4,−9, 7, 6,−5, 2, 0,

2, 5, 6,−7,−9, 4, 4,−3,−3, 1, 1

8 44 37
−1, 1, 1,−1, 1,−1, 1, 3,−3, 13,−12, 0, 0,−12,
6,−20,−6, 2, -34,34,−2, 6, 20,−6, 12, 0, 0, 12,

−13, 3,−3,−1, 1,−1, 1,−1,−1, 1

9 50 42
−1, 1, 1,−1, 1,−1, 1,−1, 5,−3, 11,−8,−6, 4,
−14, 8,−20, 2,−28, 2,−24, 10, 24, 2, 28, 2, 20, 8

14, 4, 6,−8,−11,−3,−5,−1,−1,−1,−1,−1,−1, 1, 1

10 65 56

1,−1,−1, 1,−1, 1,−1, 1,−1,−4, 4,−16, 15, 1,−1,
17,−17, 33,−23, 41, 7,−2, 66,−66, 18,−18,−78, 68, -120,

68,−78,−18, 18,−66, 66,−2, 7, 41,−23, 33,−17,
17,−1, 1, 15,−16, 4,−4,−1, 1,−1, 1,−1, 1,−1,−1, 1,



Conjectures: Let Tr (z) := Pr (z)/Qr (z), where
Pr (z) and Qr (z) are relatively prime polynomials,
and qr := deg(Qr (z)).

Qr (z) =



















−zqrQr (+1/z) if r ≡ 0(4)

−zqrQr (−1/z) if r ≡ 1(4)

+zqrQr (+1/z) if r ≡ 2(4)

+zqrQr (−1/z) if r ≡ 3(4)

Let s = ⌊r/2⌋.

qr =

{

1 + s + 2s2 if r ≡ 0, 2, 3(4)

2 + 2s + 2s2 if r ≡ 1(4)



Open Problem
Conjecture: For all k ≥ 0 and m ≥ 1 there is an
n0 such that, for all n ≥ n0 where n(n + k) and m

have the same parity,

T (n + k , n,m) = T (n0 + k , n0,m).

Example (k = 0,m = 1):
T (n, n, 1) = 8 + 2 = 10 for all
n ≥ 3.



Formula for m monomers in a square

◮ The k = 0 case (is true):
The number of n × n tatami tilings with m

monomers, m = n mod 2, and m < n, is

T (n, n,m) = (m + 1)2m+1 +m2m.

◮ Example: When m = 1, we get 2 · 22 + 2 = 10
(previous slide).



Counting by type of dimer
◮ Let Kn(z) be the polynomial whose i-th coefficient is the number

of n×n tilings with n monomers and that contain i vertical dimers.

◮ For example:

K11(z) = 2(1+z)5(1+z2)2(1−z+z2)(1+z4)(1−z+z2−z3+z4)I (z)

= Φ5
2(z)Φ

2
4(z)Φ6(z)Φ8(z)Φ10(z)I (z)

where I (z) is irreducible and Φd (z) is the d-cyclotomic polynomial.

◮ Knuth: “... so something is indeed going on, cyclotomically!”

◮ Conjecture: For n even,

Kn(z) = In(z)
∏

j≥1

S⌊(n−1)/2j⌋(z),

where In(z) is an irreducible polynomial and

Sn(z) := (1 + z) · · · (1 + zn) =

n
∏

j=1

Φ
⌊ n+j

2j ⌋

2j (z).



More tatami problems

Given an arbitrary shaped grid, what is the
minimum number of monomers in a tatami tiling?

Is there a polynomial-time algorithm to determine
the answer?



More tatami problems

Given an arbitrary shaped grid, what is the
minimum number of monomers in a tatami tiling?

Is there a polynomial-time algorithm to determine
the answer?



Tomography
Is it possible to tile a grid with these row and
column projections? What is the complexity of this?



Alejandro’s flash game

Play this flash game at
http://miniurl.org/tomoku.

http://miniurl.org/tomoku


Magnetic water strider problem

◮ Strider legs can not cross.
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◮ Find a minimum strider maximal configuration.



Magnetic water strider problem

◮ Strider legs can not cross.

◮ How many striders can be placed?

◮ Find a minimum strider maximal configuration.

◮ Game: players take turns placing striders.



Lozenge Tatami Tilings?
◮ This work done together with Jen Debroni.
◮ We consider lozenge tilings of n by m by k

hexagons.
◮ With no constraints, the number of tilings has
a beautiful formula (MacMahon):

L6(k , n,m) =
k
∏

i=1

n
∏

j=1

m
∏

ℓ=1

i + j + ℓ− 1

i + j + ℓ− 2

◮ The number of lozenges that can meet at a
grid point is 3, 4, 5, or 6.



◮ L3(k , n,m) is 0 unless k = n = m = 1.
◮ L4(k , n,m) = k + n +m − 1.

◮ The interesting case is L5(k , n,m).
◮ L(1, 1, n) = n + 1.
◮ L(2, 2, n) = 1

12(1 + n)(12 + 18n + 5n2 + n3).
◮ Conjecture: For fixed k and m the value
L(k ,m, n) is a polynomial in n of degree km.



Thanks for coming!
Any questions?
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